Sistema inmunitario

image
De Wikipedia, la enciclopedia libre
Sistema inmunitario
image
En la imagen, neutrófilos (en color amarillo) fagocitando bacterias del carbunco (en color naranja). Imagen obtenida mediante un microscopio electrónico de barrido. La línea blanca en la parte inferior izquierda equivale a 5 micrómetros.
Estudiado (a) por inmunología
Información fisiológica
Función Protección de un organismo ante agentes externos.
Estructuras principales
Leucocitos o glóbulos blancos
  • La alteración de una sustancia corporal.
  • El sistema inmunitario responde a una sustancia extraña —antígeno— que parece tener las mismas características a una sustancia natural del cuerpo e involuntariamente procede a atacar tanto las sustancias del cuerpo como las extrañas.
  • El mal funcionamiento de las células que controlan la producción de anticuerpos.

Hipersensibilidad

]

La hipersensibilidad es una inmunorrespuesta que daña los tejidos propios del cuerpo. Está dividida en cuatro clases (Tipos I-IV) basándose en los mecanismos involucrados y el tiempo de desarrollo de la reacción hipersensible. El tipo I de hipersensibilidad es una reacción inmediata o anafiláctica, relacionada con alergias. Los síntomas van desde un malestar suave hasta la muerte. El tipo I de hipersensibilidad está mediado por la inmunoglobulina E, que es liberada por mastocitos y basófilos.[100]​ El tipo II de hipersensibilidad se produce cuando los anticuerpos se ligan a antígenos localizados sobre las células propias del paciente, marcándolas para su destrucción. También recibe el nombre de hipersensibilidad dependiente de anticuerpos o citotóxica y es mediada por anticuerpos de tipo IgG e IgM.[100]​ Los inmunocomplejos (agregados de antígenos, proteínas del complemento, y anticuerpos IgG e IgM) depositados en varios tejidos desencadenan la hipersensibilidad de tipo III.[100]​ La hipersensibilidad de tipo IV (también conocida como "hipersensibilidad de tipo retardado") generalmente tarda entre dos y tres días en desarrollarse. Las reacciones de tipo IV están implicadas en muchas enfermedades autoinmunes e infecciosas, pero también incluyen dermatitis de contacto. Estas reacciones son mediadas por las células T, monocitos y macrófagos.[100]

Otros mecanismos de defensa del huésped

]

Es probable que el sistema inmunitario adaptativo y de múltiples componentes surgiera con los primeros vertebrados, ya que en los invertebrados no se producen linfocitos ni respuestas humorales basadas en anticuerpos.[13]​ Muchas especies, sin embargo, utilizan mecanismos que parecen ser los precursores de estas funciones de la inmunidad de los vertebrados. Los sistemas inmunitarios aparecen incluso en las formas de vida más simples, como las bacterias, que utilizan un único mecanismo de defensa llamado "sistema de restricción y modificación" para protegerse de patógenos víricos llamados bacteriófagos.[101]

Los receptores de reconocimiento de patrón son proteínas que emplean casi todos los organismos para identificar moléculas relacionadas con patógenos microbianos. Los péptidos antimicrobianos llamados defensinas constituyen un componente de la respuesta inmunitario innata que se ha conservado a lo largo de la evolución, está presente en todos los animales y plantas y representa la forma principal de inmunidad sistémica de los invertebrados.[13]​ El sistema del complemento y las células fagocitarias también se encuentran presentes en la mayoría de los invertebrados. Las ribonucleasas y la ruta de interferencia de ARN se conservan en todos los eucariotas y se piensa que desempeñan una función en la respuesta inmunitario ante los virus y otros materiales genéticos extraños.[102]

A diferencia de los animales, las plantas no poseen células con capacidad fagocítica y la respuesta inmunitaria de la mayoría de las plantas comprende mensajeros químicos sistémicos que se distribuyen por toda la planta.[103]​ Cuando una parte de un vegetal resulta infectada, la planta genera una respuesta de hipersensibilidad localizada mediante la que las células del lugar de la infección sufren una rápida apoptosis para prevenir que la infección se extienda a otras partes de la planta. La resistencia sistémica adquirida (SAR) es un tipo de respuesta de las plantas que convierte a toda la planta en resistente a un agente infeccioso en particular.[103]​ Los mecanismos de silenciamiento de ARN tienen una especial importancia en esta respuesta sistémica, ya que pueden bloquear la replicación de virus.[104]

Inmunología de tumores

]
image
Los macrófagos han identificado una célula cancerosa (la grande). Fusionándose con la célula cancerosa, los macrófagos (las células blancas de menor tamaño) inyectarán toxinas que la matarán. La inmunoterapia para el tratamiento del cáncer es un área activa de investigación médica.[105]

Otra función importante del sistema inmunitario es la de identificar y eliminar células tumorales. Las células transformadas de los tumores expresan antígenos que no aparecen en células normales. El sistema inmunitario considera a estos antígenos como extraños, lo que ocasiona que las células inmunitarias ataquen a las células tumorales transformadas. Los antígenos expresados por los tumores pueden tener varios orígenes;[106]​ algunos derivan de virus oncógenos como el papilomavirus humano, que ocasiona cáncer de cuello uterino,[107]​ mientras que otros son proteínas propias del organismo que se presentan en bajos niveles en células normales, pero que alcanzan altos niveles en células tumorales. Un ejemplo es una enzima llamada tirosinasa que, cuando se expresa en altos niveles, transforma a ciertas células de la piel (melanocitos) en tumores llamados melanomas.[108][109]

La principal respuesta del sistema inmunitario es destruir las células anormales por medio de células T asesinas, algunas veces con asistencia de células T colaboradoras.[109][110]​ Los antígenos tumorales son presentados unidos a moléculas del CMH de clase I, de forma similar a lo que ocurre con los antígenos víricos. Esto permite a las células T asesinas reconocer a las células tumorales como anormales.[111]​ Las células T asesinas naturales también matan células tumorales de una forma similar, especialmente si la célula tumoral tiene sobre su superficie menos moléculas del CMH de clase I de lo normal; algo que resulta habitual en los tumores.[112]​ A veces se generan anticuerpos contra las células tumorales, lo que permite que sean destruidas por el sistema del complemento.[106][113][114]

No obstante, algunas células tumorales evaden la acción del sistema inmunitario y generan cánceres.[115]​ Un mecanismo empleado a veces por las células tumorales, para evadir su detección por parte de las células T asesinas, consiste en reducir el número de moléculas del CMH de clase I en su superficie.[111]​ Algunas células tumorales también liberan productos que inhiben la respuesta inmunitaria, por ejemplo al secretar la citoquina TGF-β, la cual suprime la actividad de macrófagos y linfocitos.[116]​ Además, también puede desarrollarse tolerancia inmunológica frente a los antígenos tumorales, de forma que el sistema inmunitario deja de atacar a las células tumorales.[115]

Regulación fisiológica

]

Las hormonas pueden modular la sensibilidad del sistema inmunitario. Por ejemplo, se sabe que las hormonas sexuales femeninas estimulan las reacciones tanto del sistema inmunitario adaptativo[117]​ como del innato.[118]​ Algunas enfermedades autoinmunes como el lupus eritematoso afectan con mayor frecuencia a las mujeres, y su comienzo coincide a menudo con la pubertad. Por el contrario, andrógenos como la testosterona parece que deprimen al sistema inmunitario.[119]​ Otras hormonas, como la prolactina y la hormona de crecimiento o vitaminas como la vitamina D, parece que también regulan las respuestas del sistema inmunitario.[120][121]​ Se piensa que el descenso progresivo en los niveles de hormonas con la edad, pudiera ser parcialmente responsable del debilitamiento de las respuestas inmunitarias en individuos de edad avanzada.[122]​ A la inversa, algunas hormonas son reguladas por el sistema inmunitario, sobre todo la actividad de la hormona tiroidea.[123]

El sistema inmunitario se ve potenciado con el sueño y el descanso,[124]​ mientras que resulta perjudicado por el estrés.[125]​ Las dietas pueden afectar al sistema inmunitario; por ejemplo frutas frescas, vegetales y comida rica en ciertos ácidos grasos favorecen el mantenimiento de un sistema inmunitario saludable.[126]​ Asimismo, la desnutrición fetal puede causar una debilitación de por vida del sistema inmunitario.[127]​ En las medicinas tradicionales, se cree que algunas plantas pueden estimular el sistema inmunitario y ciertos estudios así lo han sugerido,[128]​ aunque su mecanismo de acción es complejo y difícil de caracterizar.

Sueño y descanso

]

El sistema inmunitario se ve afectado por el sueño y el descanso, y la falta de sueño es perjudicial para la función inmunitaria.[129]​ Los circuitos de retroalimentación complejos que involucran citocinas, como la IL-1 y el TNF-α producidos en respuesta a la infección, también parecen desempeñar un papel en la regulación del sueño con movimientos oculares no rápidos (REM).[130]​ Por lo tanto, la respuesta inmunitaria a la infección puede provocar cambios en el ciclo del sueño, incluido un aumento del sueño de ondas lentas en relación con el sueño REM.[131]

En las personas que sufren de privación del sueño, las inmunizaciones activas pueden tener un efecto disminuido y pueden resultar en una menor producción de anticuerpos y una menor respuesta inmunitaria, de lo que se observaría en una persona bien descansada.[132]​ Además, proteínas como NFIL3, que se ha demostrado que están estrechamente entrelazadas tanto con la diferenciación de células T como con los ritmos circadianos, pueden verse afectadas por la alteración de los ciclos naturales de luz y oscuridad a través de casos de privación del sueño. Estas alteraciones pueden provocar un aumento de afecciones crónicas como enfermedades cardíacas, dolor crónico y asma.[133]

Además de las consecuencias negativas de la privación del sueño, se ha demostrado que el sueño y el sistema circadiano entrelazado tienen fuertes efectos reguladores sobre las funciones inmunológicas que afectan tanto a la inmunidad innata como a la adaptativa. Primero, durante la etapa temprana del sueño de ondas lentas, una caída repentina de los niveles sanguíneos de cortisol, epinefrina y norepinefrina provoca un aumento de los niveles sanguíneos de las hormonas leptina, hormona del crecimiento hipofisario y prolactina. Estas señales inducen un estado proinflamatorio a través de la producción de citocinas proinflamatorias IL-1, IL-12, TNF-alfa e interferón gamma. Estas citocinas luego estimulan funciones inmunes como la activación, proliferación y diferenciación de las células inmunes. Durante este tiempo de una respuesta inmunitaria adaptativa que evoluciona lentamente, hay un pico en las células indiferenciadas o menos diferenciadas, como las células T de memoria central y vírgenes. Además de estos efectos, el medio de las hormonas producidas en este momento (leptina, hormona del crecimiento hipofisario y prolactina) respalda las interacciones entre las células presentadoras de antígenos (APC) y las células T, un cambio del equilibrio de citocinas Th1 / Th2 hacia uno que respalda a Th1, un aumento de la proliferación general de células Th y migración de células T vírgenes a los ganglios linfáticos. También se cree que esto favorece la formación de una memoria inmunitaria duradera mediante el inicio de respuestas inmunitarias Th1.[134]

Durante los períodos de vigilia, las células efectoras diferenciadas, como las células NK y los linfocitos T citotóxicos, alcanzan su punto máximo para provocar una respuesta eficaz contra cualquier patógeno intruso. Las moléculas antiinflamatorias, como el cortisol y las catecolaminas, también alcanzan su punto máximo durante los momentos activos de vigilia. La inflamación causaría graves deterioros cognitivos y físicos si ocurriera durante las horas de vigilia, y la inflamación puede ocurrir durante las horas de sueño debido a la presencia de melatonina. La inflamación causa una gran cantidad de estrés oxidativo y la presencia de melatonina durante las horas de sueño podría contrarrestar activamente la producción de radicales libres durante este tiempo.

Manipulación en la medicina

]
image
La corticosterona es una droga inmunosupresora.

La respuesta inmunitaria puede ser manipulada para suprimir respuestas no deseadas de la autoinmunidad, la alergia y el rechazo de trasplantes, así como para estimular respuestas protectoras contra patógenos que en gran medida eluden la acción del sistema inmunitario. Se emplean fármacos inmunosupresores para controlar las enfermedades autoinmunes o la inflamación cuando produce grandes daños en los tejidos, o para prevenir el rechazo de un órgano trasplantado.[57][135]

Los fármacos antiinflamatorios se emplean para controlar los efectos de la inflamación. Los corticosteroides son los más poderosos de estos medicamentos; sin embargo, tienen muchos efectos tóxicos colaterales y su uso debe ser controlado estrictamente.[136]​ Por ello, a menudo, se emplean dosis más bajas de antiinflamatorios junto con fármacos inmunosupresores y citotóxicos como el metotrexato o la azatioprina. Los fármacos citotóxicos inhiben la inmunorrespuesta destruyendo células que se están dividiendo, como las células T que han sido activadas. Sin embargo, la destrucción es indiscriminada, por lo que otros órganos y tipos de células resultan afectados, lo que ocasiona efectos colaterales.[135]​ Los fármacos inmunodepresores como la ciclosporina evitan que las células T respondan correctamente a las señales, inhibiendo rutas de transducción de señales.[137]

Los fármacos de mayor peso molecular (> 500 dalton) pueden provocar la neutralización de la respuesta inmunitaria, particularmente si son suministrados repetidamente, o en dosis grandes. Esto limita la eficacia de los fármacos constituidos por grandes péptidos y proteínas (que generalmente superan los 6000 dalton). En algunos casos, el fármaco no es inmunógeno en sí mismo, pero puede ser coadministrado con un medicamento inmunógeno, como el Taxol. Se han desarrollado métodos computacionales para predecir la inmunogenicidad de péptidos y proteínas, que resultan particularmente útiles en el diseño de anticuerpos terapéuticos, la valoración de la probable virulencia de las mutaciones que afecten a partículas víricas de recubrimiento y la validación de nuevos fármacos basados en péptidos. Las primeras técnicas se basaban principalmente en el hecho observado de que los aminoácidos hidrófilos se encuentran presentes, en mayor cantidad que los aminoácidos hidrófobos, en los epítopos (determinantes antigénicos que producen una interacción específica reversible con una inmunoglobulina y consisten en un grupo de aminoácidos localizados sobre la superficie del antígeno);[138]​ sin embargo, más recientemente se han empleado técnicas de Aprendizaje Automático, que se sirven de bases de datos de epítopos conocidos, generalmente de proteínas víricas bien estudiadas.[139]​ Se ha creado una base de datos de acceso público para la catalogación de epítopos de patógenos que se sabe son reconocidos por células B.[140]​ Los estudios de inmunogenicidad basados en la bioinformática, constituyen un campo emergente que se conoce con el nombre de inmunoinformática.[141]

Manipulación por los patógenos

]

El éxito de cualquier patógeno depende de su habilidad para eludir las respuestas inmunitarias del huésped. Por ello, los patógenos han desarrollado diferentes métodos que les permiten infectar con éxito al huésped, al mismo tiempo que evaden la destrucción producida por la inmunidad.[142]​ Las bacterias frecuentemente logran sobrepasar las barreras físicas al secretar enzimas que digieren la barrera —por ejemplo, utilizando un sistema de secreción de tipo II—.[143]​ Alternativamente, al usar un sistema de secreción tipo III, pueden insertar un tubo hueco en la célula huésped que les provee de un conducto para trasladar proteínas del patógeno al huésped; las proteínas transportadas por el tubo son utilizadas frecuentemente para desarmar las defensas del huésped.[144]

Una estrategia utilizada por varios patógenos para eludir al sistema inmunitario innato es la replicación intracelular (también llamada patogénesis intracelular). En ella, un patógeno pasa la mayor parte de su ciclo vital dentro de células huésped en donde se protege del contacto directo con células inmunitarias, anticuerpos y proteínas del complemento. Algunos ejemplos de patógenos intracelulares incluyen virus, bacterias del género Salmonella causantes de toxiinfecciones alimentarias y los parásitos eucariotas que causan la malaria (Plasmodium falciparum) y la leismaniosis (Leishmania spp.). Otras bacterias, como el Mycobacterium tuberculosis, viven dentro de una cápsula protectora que evita su lisis por el complemento.[145]​ Muchos patógenos secretan componentes que disminuyen o desvían la respuesta inmunitaria del huésped.[142]​ Algunas bacterias forman biopelículas para protegerse de las células y proteínas del sistema inmunitario. Estas biopelículas están presentes en muchas infecciones que cursan con éxito, como por ejemplo las infecciones crónicas producidas por Pseudomonas aeruginosa y Burkholderia cenocepacia características de la Fibrosis quística.[146]​ Otras bacterias generan proteínas de superficie que se ligan a los anticuerpos, volviéndolos ineficaces. Como ejemplos se pueden citar: estreptococos (proteína G), Staphylococcus aureus (proteína A), y Peptostreptococcus magnus (proteína L).[147]

Los mecanismos empleados por los virus para eludir al sistema inmunitario adaptativo son más complejos. El enfoque más sencillo consiste en cambiar rápidamente los epítopos no esenciales (aminoácidos o azúcares) de la superficie del invasor, mientras se mantienen los epítopos esenciales ocultos. El VIH, por ejemplo, muta regularmente las proteínas de su envoltura viral que le son esenciales para entrar en las células huésped que son su objetivo. Estos cambios frecuentes en antígenos pueden explicar el hecho de no haber logrado producir vacunas dirigidas contra estas proteínas.[148]​ Otra estrategia común para evitar ser detectados por el sistema inmunitario consiste en enmascarar sus antígenos con proteínas de la célula huésped. Así, en el VIH, la envoltura que recubre al virión está formada por la membrana más externa de la célula huésped; tales virus «autocamuflados» dificultan que el sistema inmunitario los identifique como algo no propio.[149]

Historia de la inmunología

]

La inmunología es una ciencia que examina la estructura y función del sistema inmunitario. Se origina en la medicina y en los primeros estudios sobre las causas de la inmunidad a las enfermedades. La referencia más antigua a la inmunidad se produce durante la plaga de Atenas en el 430 a. C., donde Tucídides notó que algunas personas que se habían recuperado de un brote anterior de la enfermedad podían atender a los enfermos sin contraer la enfermedad por segunda vez.[150]​ Esta observación de inmunidad adquirida fue luego utilizada por Louis Pasteur en el desarrollo de la vacunación y en su teoría microbiana de la enfermedad.[151]​ La teoría de Pasteur se oponía a las teorías contemporáneas sobre las enfermedades, tales como la teoría miasmática. No se confirmó que los microorganismos fueran la causa de las enfermedades infecciosas hasta 1891, cuando Robert Koch enunció sus postulados, por los que recibió el Premio Nobel en 1905.[152]​ En 1901, con el descubrimiento del virus de la fiebre amarilla por Walter Reed, se confirmó que los virus son patógenos humanos.[153]

Se produjo un gran avance en la inmunología hacia el final del siglo XIX, gracias al rápido desarrollo de los estudios de inmunidad humoral y de inmunidad celular.[154]​ De particular importancia fue el trabajo de Paul Ehrlich, quien propuso la Teoría de la cadena lateral para explicar la especificidad de la reacción antígeno-anticuerpo; sus contribuciones al entendimiento de la inmunología humoral fueron reconocidos con el Premio Nobel en 1908, recibido en conjunto con Elie Metchnikoff, el fundador de la inmunología celular.[155]

Peter Gorer descubrió en 1936 el antígeno H-2 del ratón, y consigo el primer complejo mayor de histocompatibilidad (MHC). Mientras tanto, Peter Medawar y Thomas Gibson pudieran aclarar funciones importantes de las células inmunitarias. En 1948, Astrid Fagraeus descubrió que los anticuerpos son producidos por los linfocitos B del plasma. Un año más tarde, Frank Macfarlane Burnet y Frank Fenner publicaron su hipótesis sobre la tolerancia inmunitaria, que sería confirmada algunos años más tarde por Jacques Miller con el descubrimiento de la eliminación de linfocitos T autorreactivos en el timo. En 1957, Frank Macfarlane Burnet describió la teoría de la selección clonal como principio central de la inmunidad adaptiva.[156]

A finales de la década de 1960 y principios de la década de 1970, John David y Barry Bloom descubrieron el Factor Inhibidor de Migración de los Macrófagos (MIF) y una nueva clase de sustancias secretadas por los linfocitos. Dudley Dumonde acuñó el término "linfocina" para estas sustancias. Stanley Cohen, que en 1986 consiguió el Premio Nobel de Fisiología o Medicina por su descubrimiento de los factores de crecimiento NGF y EGF,[157][158]​ comenzó a estudiar a principios de la década de 1970 las funciones de los factores denominados "linfocinas" junto con Takeshi Yoshida. Descubrieron que estas sustancias pertenecen a un grupo de sustancias mensajeras que son producidas por muchos tipos diferentes de células del sistema inmunitario. En 1974 Stanley Cohen propuso el término "citocina", que se consolidó con el descubrimiento de más sustancias de este tipo. Desde entonces se han descubierto más de cien nuevas citocinas, la estructura y las funciones de las cuales han sido investigadas en detalle.

Véase también

]
  • Inmunología
  • Inmunoterapia
  • Cronología de la Inmunología
  • Anticuerpo monoclonal
  • Anticuerpo
  • Anticuerpo policlonal
  • Apoptosis
  • Selección clonal
  • Inmunoestimulador
  • Antígeno
  • Epítopo
  • Hapteno

Referencias

]
  1. F. Lozano Soto (2012). «Introducción al sistema inmunológico, sus principales elementos y la respuesta inmunitaria». En Farreras; Rozman, eds. Medicina Interna (17 edición). Barcelona, España: Elsevier España. pp. 2453-2488. ISBN 9788480868969. 
  2. Delvis, Peter J. (2016). «Panorama general del sistema inmunitario» (en inglés). Merck Sharp & Dohme Corp. Consultado el 21 de junio de 2016. 
  3. Berkow, Roberts (2008). «16». Manual Merck: Home edition (2da. edición). Océano. p. 837. ISBN 84-494-1184-X. 
  4. «sistema inmunitario». Real Academia Nacional de Medicina de España. 
  5. National Institute of Allergy and Infectious Diseases, ed. (2003). Understanding the Immune System: How It Works [Entendiendo el sistema inmune: cómo trabaja] (en inglés). Estados Unidos. Archivado desde el original el 25 de junio de 2023. Consultado el 21 de junio de 2016. 
  6. Middleton D, Curran M, Maxwell L (August de 2002). «Natural killer cells and their receptors». Transplant Immunology 10 (2-3): 147-64. PMID 12216946. doi:10.1016/S0966-3274(02)00062-X. 
  7. Pancer Z, Cooper MD (2006). «The evolution of adaptive immunity». Annual Review of Immunology 24: 497-518. PMID 16551257. doi:10.1146/annurev.immunol.24.021605.090542. 
  8. Berkow, Roberts (2008). «16». Manual Merck: Home edition (2da. edición). Océano. p. 838. ISBN 84-494-1184-X. 
  9. Rus H, Cudrici C, Niculescu F (2005). «The role of the complement system in innate immunity». Immunologic Research 33 (2): 103-12. PMID 16234578. doi:10.1385/IR:33:2:103. 
  10. Matzinger P (April de 2002). «The danger model: a renewed sense of self». Science 296 (5566): 301-5. PMID 11951032. doi:10.1126/science.1071059. 
  11. Berkow, Roberts (2008). «16». Manual Merck: Home edition (2da. edición). Océano. p. 838. ISBN 84-494-1184-X. 
  12. Agerberth B, Gudmundsson GH (2006). «Host antimicrobial defence peptides in human disease». Current Topics in Microbiology and Immunology 306: 67-90. PMID 16909918. doi:10.1007/3-540-29916-5_3. 
  13. Beck, Gregory; Gail S. Habicht (noviembre de 1996). «Immunity and the Invertebrates» (PDF). Scientific American: 60-66. Consultado el 18 de octubre de 2009. 
  14. Berkow, Roberts (2008). «16». Manual Merck: Home edition (2da. edición). Océano. p. 842. ISBN 84-494-1184-X. 
  15. Berkow, Roberts (2008). «16». Manual Merck: Home edition (2da. edición). Océano. p. 846. ISBN 84-494-1184-X. 
  16. Joos L, Tamm M (2005). «Breakdown of pulmonary host defense in the immunocompromised host: cancer chemotherapy». Proceedings of the American Thoracic Society 2 (5): 445-8. PMID 16322598. doi:10.1513/pats.200508-097JS. 
  17. Copeland KF, Heeney JL (December de 1996). «T helper cell activation and human retroviral pathogenesis». Microbiological Reviews 60 (4): 722-42. PMC 239461. PMID 8987361. 
  18. «Diccionario médico-biológico, histórico y etimológico: inmunidad». Ediciones Universidad Salamanca. febrero de 2012. Archivado desde el original el 1 de agosto de 2016. Consultado el 21 de junio de 2016. 
  19. «Sistema inmunitario y no sistema inmunológico». Fundéu BBVA. 3 de octubre de 2011. Consultado el 21 de junio de 2016. 
  20. «Laboratorio del lenguaje: Inmune, inmunitario e inmunológico». medicablogs. 4 de marzo de 2013. Consultado el 21 de junio de 2016. 
  21. Gomila, Xavier Albons; Puigventós, Àngels Egea. «Immunològic i immunitari: un esforç il·lògic?» [Inmunológico e inmunitario: ¿un esfuerzo ilógico?]. Assessorament Lingüístic i Terminologia (en catalán) (Barcelona, España: Serveis Lingüístics, Universitat de Barcelona). Consultado el 21 de junio de 2016. 
  22. http://www.ugr.es/~eianez/inmuno/cap_02.htm
  23. Litman G, Cannon J, Dishaw L (2005). «Reconstructing immune phylogeny: new perspectives.». Nat Rev Immunol 5 (11): 866-79. PMID 16261174. 
  24. Mayer, Gene (2006). «Immunology - Chapter One: Innate (non-specific) Immunity». Microbiology and Immunology On-Line Textbook. USC School of Medicine. Archivado desde el original el 16 de febrero de 2007. Consultado el 1 de enero de 2007. 
  25. Smith A.D. (Ed) Oxford dictionary of biochemistry and molecular biology. (1997) Oxford University Press. ISBN 0-19-854768-4
  26. Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters (2002). Molecular Biology of the Cell; Fourth Edition. New York and London: Garland Science. ISBN 0-8153-3218-1. 
  27. Reid G, Jass J, Sebulsky M, McCormick J (2003). «Potential uses of probiotics in clinical practice». Clin Microbiol Rev 16 (4): 658-72. PMID 14557292. doi:10.1128/CMR.16.4.658-672.2003. 
  28. Medzhitov R (2007). «Recognition of microorganisms and activation of the immune response». Nature 449 (7164): 819-26. PMID 17943118. doi:10.1038/nature06246. 
  29. Boyton R, Openshaw P (2002). «Pulmonary defences to acute respiratory infection». Br Med Bull 61: 1-12. PMID 11997295. doi:10.1093/bmb/61.1.1. 
  30. Agerberth B, Gudmundsson G. «Host antimicrobial defence peptides in human disease.». Curr Top Microbiol Immunol 306: 67-90. PMID 16909918. 
  31. Moreau J, Girgis D, Hume E, Dajcs J, Austin M, O'Callaghan R (2001). «Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus.». Invest Ophthalmol Vis Sci 42 (10): 2347-54. PMID 11527949. 
  32. Hankiewicz J, Swierczek E (1974). «Lysozyme in human body fluids.». Clin Chim Acta 57 (3): 205-9. PMID 4434640. 
  33. Fair W, Couch J, Wehner N (1976). «Prostatic antibacterial factor. Identity and significance.». Urology 7 (2): 169-77. PMID 54972. 
  34. Yenugu S, Hamil K, Birse C, Ruben S, French F, Hall S (2003). «Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli.». Biochem J 372 (Pt 2): 473-83. PMID 12628001. Archivado desde el original el 16 de septiembre de 2019. Consultado el 1 de marzo de 2007. 
  35. Gorbach S (1990). «Lactic acid bacteria and human health». Ann Med 22 (1): 37 - 41. PMID 2109988. 
  36. Hill L, Embil J (1986). «Vaginitis: current microbiologic and clinical concepts.». CMAJ 134 (4): 321-31. PMID 3510698. 
  37. Salminen S, Gueimonde M, Isolauri E (2005). «Probiotics that modify disease risk». J Nutr 135 (5): 1294 - 8. PMID 15867327. 
  38. Reid G, Bruce A (2003). «Urogenital infections in women: can probiotics help?». Postgrad Med J 79 (934): 428-32. PMID 12954951. doi:10.1136/pmj.79.934.428. 
  39. Karakitsos D, Karabinis A (September de 2008). «Hypothermia therapy after traumatic brain injury in children». N. Engl. J. Med. 359 (11): 1179-80. PMID 18788094. 
  40. Axelrod YK, Diringer MN (May de 2008). «Temperature management in acute neurologic disorders». Neurol Clin 26 (2): 585-603, xi. PMID 18514828. doi:10.1016/j.ncl.2008.02.005. 
  41. Capítulo 58 en: Walter F., PhD. Boron (2003). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 1300. ISBN 1-4160-2328-3. 
  42. * Rhoades, R. and Pflanzer, R. Human physiology, third edition, chapter 27 Regulation of body temperature, p. 820 Clinical focus: pathogenesis of fever. ISBN 0-03-005159-2
  43. Laupland KB (July de 2009). «Fever in the critically ill medical patient». Crit. Care Med. 37 (7 Suppl): S273-8. PMID 19535958. doi:10.1097/CCM.0b013e3181aa6117. 
  44. Fauci, Anthony, et al. (2008). Harrison's Principles of Internal Medicine (17 edición). McGraw-Hill Professional. pp. 117-121. ISBN 9780071466332. 
  45. Schaffner A. Fever—useful or noxious symptom that should be treated? Ther Umsch 2006; 63: 185-8. PMID 16613288
  46. Soszynski D. The pathogenesis and the adaptive value of fever. Postepy Hig Med Dosw 2003; 57: 531-54. PMID 14737969
  47. Craven, R and Hirnle, C. (2006). Fundamentals of nursing: Human health and function. Fourth edition. p. 1044
  48. Lewis, SM, Heitkemper, MM, and Dirksen, SR. (2007). Medical-surgical nursing: Assessment and management of clinical problems. sixth edition. p. 212
  49. «Fever». Medline Plus Medical Encyclopedia. U.S. National Library of Medicine. Consultado el 20 de mayo de 2009. 
  50. Kawai T, Akira S (2006). «Innate immune recognition of viral infection». Nat Immunol 7 (2): 131-7. PMID 16424890. 
  51. Campbell, Neil A.; Reece, Jane B. (2007). Biología. Ed. Médica Panamericana. ISBN 978-84-7903-998-1. Consultado el 30 de abril de 2020. 
  52. Miller, SB (2006). «Prostaglandins in Health and Disease: An Overview». Seminars in Arthritis and Rheumatism 36 (1): 37-49. PMID 16887467. 
  53. Ogawa Y, Calhoun WJ. (2006). «The role of leukotrienes in airway inflammation.». J Allergy Clin Immunol. 118 (4): 789-98. PMID 17030228. 
  54. Le Y, Zhou Y, Iribarren P, Wang J (2004). «Chemokines and chemokine receptors: their manifold roles in homeostasis and disease». Cell Mol Immunol 1 (2): 95-104. PMID 16212895. 
  55. Martin P, Leibovich S (2005). «Inflammatory cells during wound repair: the good, the bad and the ugly.». Trends Cell Biol 15 (11): 599-607. PMID 16202600. 
  56. Mayer, Gene (2006). «Immunology - Chapter Two: Complement». Microbiology and Immunology On-Line Textbook. USC School of Medicine. Archivado desde el original el 9 de febrero de 2007. Consultado el 1 de enero de 2007. 
  57. Janeway CA, Jr. et al (2005). Immunobiology. (6th ed. edición). Garland Science. ISBN 0-443-07310-4. 
  58. Liszewski M, Farries T, Lublin D, Rooney I, Atkinson J. «Control of the complement system.». Adv Immunol 61: 201-83. PMID 8834497. 
  59. Sim R, Tsiftsoglou S (2004). «Proteases of the complement system.». Biochem Soc Trans 32 (Pt 1): 21-7. PMID 14748705. 
  60. Ryter A (1985). «Antimicrobial functions of mononuclear phagocytes». Comp Immunol Microbiol Infect Dis 8 (2): 119-33. PMID 3910340. 
  61. Langermans J, Hazenbos W, van Furth R (1994). «Antimicrobial functions of mononuclear phagocytes». J Immunol Methods 174 (1-2): 185-94. PMID 8083520. 
  62. May R, Machesky L (2001). «Phagocytosis and the actin cytoskeleton». J Cell Sci 114 (Pt 6): 1061-77. PMID 11228151. 
  63. Salzet M, Tasiemski A, Cooper E (2006). «Innate immunity in lophotrochozoans: the annelids». Curr Pharm Des 12 (24): 3043-50. PMID 16918433. 
  64. Zen K, Parkos C (2003). «Leukocyte-epithelial interactions». Curr Opin Cell Biol 15 (5): 557-64. PMID 14519390. 
  65. Stvrtinová, Viera; Ján Jakubovský and Ivan Hulín (1995). Inflammation and Fever from Pathophysiology: Principles of Disease. Computing Centre, Slovak Academy of Sciences: Academic Electronic Press. Archivado desde el original el 11 de julio de 2001. Consultado el 1 de enero de 2007. 
  66. Bowers, William (2006). «Immunology -Chapter Thirteen: Immunoregulation». Microbiology and Immunology On-Line Textbook. USC School of Medicine. Archivado desde el original el 16 de diciembre de 2006. Consultado el 4 de enero de 2007. 
  67. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. «Antigen presentation and T cell stimulation by dendritic cells». Annu Rev Immunol 20: 621-67. PMID 11861614. 
  68. Krishnaswamy G, Ajitawi O, Chi D. «The human mast cell: an overview.». Methods Mol Biol 315: 13-34. PMID 16110146. 
  69. Kariyawasam H, Robinson D (2006). «The eosinophil: the cell and its weapons, the cytokines, its locations». Semin Respir Crit Care Med 27 (2): 117-27. PMID 16612762. 
  70. Middleton D, Curran M, Maxwell L (2002). «Natural killer cells and their receptors». Transpl Immunol 10 (2-3): 147-64. PMID 12216946. 
  71. Pancer Z, Cooper M. «The evolution of adaptive immunity». Annu Rev Immunol 24: 497-518. PMID 16551257. 
  72. Holtmeier W, Kabelitz D. «gammadelta T cells link innate and adaptive immune responses». Chem Immunol Allergy 86: 151-83. PMID 15976493. 
  73. Harty J, Tvinnereim A, White D. «CD8+ T cell effector mechanisms in resistance to infection». Annu Rev Immunol 18: 275-308. PMID 10837060. 
  74. Radoja S, Frey A, Vukmanovic S (2006). «T-cell receptor signaling events triggering granule exocytosis». Crit Rev Immunol 26 (3): 265-90. PMID 16928189. 
  75. Abbas A, Murphy K, Sher A (1996). «Functional diversity of helper T lymphocytes». Nature 383 (6603): 787-93. PMID 8893001. doi:10.1038/383787a0. 
  76. McHeyzer-Williams L, Malherbe L, McHeyzer-Williams M (2006). «Helper T cell-regulated B cell immunity». Curr Top Microbiol Immunol 311: 59-83. PMID 17048705. doi:10.1007/3-540-32636-7_3. 
  77. Kovacs B, Maus M, Riley J, Derimanov G, Koretzky G, June C, Finkel T (2002). «Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation». Proc Natl Acad Sci U S a 99 (23): 15006-11. PMID 12419850. doi:10.1073/pnas.232058599. 
  78. Grewal I, Flavell R (1998). «CD40 and CD154 in cell-mediated immunity». Annu Rev Immunol 16: 111-35. PMID 9597126. doi:10.1146/annurev.immunol.16.1.111. 
  79. «Understanding the Immune System: How it Works» (PDF) (en inglés). National Institute of Allergy and Infectious Diseases. Consultado el 15 de febrero de 2013. 
  80. Girardi M (2006). «Immunosurveillance and immunoregulation by γδ T cells». J Invest Dermatol 126 (1): 25-31. PMID 16417214. 
  81. Holtmeier W, Kabelitz D (2005). «gammadelta T cells link innate and adaptive immune responses». Chemical Immunology and Allergy 86: 151-83. PMID 15976493. doi:10.1159/000086659. 
  82. Holtmeier W, Kabelitz D (2005). «γδ T cells link innate and adaptive immune responses». Chem Immunol Allergy 86: 151-183. PMID 15976493. 
  83. Sproul T, Cheng P, Dykstra M, Pierce S (2000). «A role for MHC class II antigen processing in B cell development». Int Rev Immunol 19 (2-3): 139-55. PMID 10763706. 
  84. Kehry M, Hodgkin P (1994). «B-cell activation by helper T-cell membranes». Crit Rev Immunol 14 (3-4): 221-38. PMID 7538767. 
  85. Bowers, William (2006). «Immunology - Chapter nine: Cells involved in immune responses». Microbiology and Immunology On-Line Textbook. USC School of Medicine. Archivado desde el original el 16 de diciembre de 2006. Consultado el 4 de enero de 2007. 
  86. M.N. Alder, I.B. Rogozin, L.M. Iyer, G.V. Glazko, M.D. Cooper, Z. Pancer (2005). «Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate». Science 310 (5756): 1970 - 1973. PMID 16373579. 
  87. Berkow, Roberts (2008). «16». Manual Merck: Home edition (2da. edición). Océano. p. 842. ISBN 84-494-1184-X. 
  88. Saji F, Samejima Y, Kamiura S, Koyama M (1999). «Dynamics of immunoglobulins at the feto-maternal interface.». Rev Reprod 4 (2): 81-9. PMID 10357095. Archivado desde el original el 24 de junio de 2008. Consultado el 1 de marzo de 2007. 
  89. Van de Perre P (2003). «Transfer of antibody via mother's milk.». Vaccine 21 (24): 3374-6. PMID 12850343. 
  90. Keller, Margaret A. and E. Richard Stiehm (2000). «Passive Immunity in Prevention and Treatment of Infectious Diseases.». Clinical Microbiology Reviews 13 (4): 602-614. PMID 11023960. 
  91. Singh M, O'Hagan D (1999). «Advances in vaccine adjuvants». Nat Biotechnol 17 (11): 1075-81. PMID 10545912. 
  92. Death and DALY estimates for 2002 by cause for WHO Member States. Organización Mundial de la Salud. Visitado el 1 de enero de 2007.
  93. Esteban, Pablo (1508291938). «“Vacunarse es un acto solidario” | Guadalupe Nogués, una bióloga dedicada a la comunicación y la educación en ciencias». PAGINA12. Consultado el 30 de abril de 2020. 
  94. Aw D, Silva A, Palmer D (2007). «Immunosenescence: emerging challenges for an ageing population». Immunology 120 (4): 435-446. PMID 17313487. doi:10.1111/j.1365-2567.2007.02555.x. 
  95. Chandra, RK (1997). «Nutrition and the immune system: an introduction». American Journal of Clinical Nutrition. Vol 66: 460S-463S. PMID 9250133.  Free full-text pdf available
  96. Miller JF (2002). «The discovery of thymus function and of thymus-derived lymphocytes». Immunol. Rev. 185: 7-14. PMID 12190917. Archivado desde el original el 15 de diciembre de 2018. Consultado el 27 de mayo de 2010. 
  97. Joos L, Tamm M (2005). «Breakdown of pulmonary host defense in the immunocompromised host: cancer chemotherapy». Proc Am Thorac Soc 2 (5): 445-8. PMID 16322598. doi:10.1513/pats.200508-097JS. 
  98. Copeland K, Heeney J (1996). «T helper cell activation and human retroviral pathogenesis». Microbiol Rev 60 (4): 722-42. PMID 8987361. 
  99. Miller J (1993). «Self-nonself discrimination and tolerance in T and B lymphocytes». Immunol Res 12 (2): 115-30. PMID 8254222. 
  100. Ghaffar, Abdul (2006). «Immunology - Chapter Seventeen: Hypersensitivity Reactions». Microbiology and Immunology On-Line Textbook. USC School of Medicine. Archivado desde el original el 16 de diciembre de 2006. Consultado el 1 de enero de 2007. 
  101. Bickle T, Krüger D (1993). «Biology of DNA restriction». Microbiol Rev 57 (2): 434-50. PMID 8336674. 
  102. Stram Y, Kuzntzova L. (2006). «Inhibition of viruses by RNA interference». Virus Genes 32 (3): 299-306. PMID 16732482. 
  103. Schneider, David (Spring 2005). «Innate Immunity - Lecture 4: Plant immune responses». Stanford University Department of Microbiology and Immunology. Archivado desde el original el 9 de junio de 2007. Consultado el 1 de enero de 2007. 
  104. Baulcombe D (2004). «RNA silencing in plants». Nature 431 (7006): 356-63. PMID 15372043. 
  105. Morgan R et al. (2006). «Cancer regression in patients after transfer of genetically engineered lymphocytes». Science 314: 126-129. PMID 16946036. 
  106. Andersen MH, Schrama D, Thor Straten P, Becker JC (2006). «Cytotoxic T cells». J Invest Dermatol 126 (1): 32-41. PMID 16417215. 
  107. Boon T, van der Bruggen P (1996). «Human tumor antigens recognized by T lymphocytes». J Exp Med 183: 725-29. PMID 8642276. 
  108. Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G (2000). «T cell recognition of melanoma-associated antigens». J Cell Physiol 182: 323-31. PMID 10653598. 
  109. Romero P, Cerottini JC, Speiser DE (2006). «The human T cell response to melanoma antigens». Adv Immunol. 92: 187-224. PMID 17145305. 
  110. Gerloni M, Zanetti M. (2005). «CD4 T cells in tumor immunity». Springer Semin Immunopathol 27 (1): 37-48. PMID 15965712. 
  111. Seliger B, Ritz U, Ferrone S (2006). «Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation». Int J Cancer 118 (1): 129-38. PMID 16003759. 
  112. Hayakawa Y, Smyth MJ. (2006). «Innate immune recognition and suppression of tumors». Adv Cancer Res 95: 293-322. PMID 16860661. 
  113. Guevara-Patino JA, Turk MJ, Wolchok JD, Houghton AN (2003). «Immunity to cancer through immune recognition of altered self: studies with melanoma». Adv Cancer Res. 90: 157-77. PMID 14710950. 
  114. Renkvist N, Castelli C, Robbins PF, Parmiani G (2001). «A listing of human tumor antigens recognized by T cells». Cancer Immunol Immunother 50: 3-15. PMID 11315507. 
  115. Seliger B (2005). «Strategies of tumor immune evasion». BioDrugs 19 (6): 347-54. PMID 16392887. 
  116. Frumento G, Piazza T, Di Carlo E, Ferrini S (2006). «Targeting tumor-related immunosuppression for cancer immunotherapy». Endocr Metab Immune Disord Drug Targets 6 (3): 233-7. PMID 17017974. 
  117. Wira, CR; Crane-Godreau M, Grant K (2004). «Endocrine regulation of the mucosal immune system in the female reproductive tract». En In: Ogra PL, Mestecky J, Lamm ME, Strober W, McGhee JR, Bienenstock J (eds.), ed. Mucosal Immunology. San Francisco: Elsevier. ISBN 0-12-491543-4. 
  118. Lang, TJ (2004). «Estrogen as an immunomodulator». Clin Immunol 113: 224-230. PMID 15507385. 
    Moriyama, A; Shimoya K, Ogata I et al. (1999). «Secretory leukocyte protease inhibitor (SLPI) concentrations in cervical mucus of women with normal menstrual cycle». Molecular Human Reproduction 5: 656-661. PMID 10381821. 
    Cutolo, M; Sulli A, Capellino S, Villaggio B, Montagna P, Seriolo B, Straub RH (2004). «Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity». Lupus 13: 635-638. PMID 15485092. 
    King, AE; Critchley HOD, Kelly RW (2000). «Presence of secretory leukocyte protease inhibitor in human endometrium and first trimester decidua suggests an antibacterial role». Molecular Human Reproduction 6: 191-196. PMID 10655462. 
  119. Fimmel, S; Zouboulis CC (2005). «Influence of physiological androgen levels on wound healing and immune status in men». Aging Male 8: 166-174. PMID 16390741. 
  120. Dorshkind, K; Horseman ND (2000). «The Roles of Prolactin, Growth Hormone, Insulin-Like Growth Factor-I, and Thyroid Hormones in Lymphocyte Development and Function: Insights from Genetic Models of Hormones and Hormone Receptor Deficiency». Endocrine Reviews 21: 292-312. PMID 10857555. Archivado desde el original el 31 de julio de 2010. Consultado el 1 de marzo de 2007. 
  121. Nagpal, Sunil; Songqing Naand and Radhakrishnan Rathnachalam (2005). «Noncalcemic Actions of Vitamin D Receptor Ligands». Endocrine Reviews 26 (5): 662-687. PMID 15798098. Archivado desde el original el 19 de febrero de 2009. Consultado el 1 de marzo de 2007. 
  122. Hertoghe, T (2005). «The “multiple hormone deficiency” theory of aging: Is human senescence caused mainly by multiple hormone deficiencies?». Annals of the New York Academy of Science 1051: 448-465. PMID 16399912. 
  123. Klein, JR (2006). «The immune system as a regulator of thyroid hormone activity». Exp Biol Med 231: 229-236. PMID 16514168. 
  124. Lange, T; Perras B, Fehm HL, Born J (2003). «Sleep Enhances the Human Antibody response to Hepatitis A Vaccination». Psychosomatic Medicine 65: 831-835. PMID 14508028. 
  125. Khansari, DN; Murgo AJ, Faith RE (1990). «Effects of stress on the immune system». Immunology Today 11: 170-175. PMID 2186751. 
  126. Pond, CM (2005). «Adipose tissue and the immune system». Prostaglandins, Leukotrienes, and Essential Fatty Acids 73: 17-30. PMID 15946832. 
  127. Langley-Evans, SC; Carrington LJ (2006). «Diet and the developing immune system». Lupus 15: 746-752. PMID 17153845. 
  128. Spelman, K; Burns J, Nichols D, Winters N, Ottersberg S, Tenborg M (2006). «Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators». Alternative Medicine reviews 11: 128-150. PMID 16813462. 
    Brush, J; Mendenhall E, Guggenheim A, Chan T, Connelly E, Soumyanth A, Buresh R, Barrett R, Zwickey H (2006). «The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD69 expression and immune cell activation in humans». Phytotherapy Research 20: 687-695. PMID 16807880. 
  129. Bryant PA, Trinder J, Curtis N (Jun 2004). «Sick and tired: Does sleep have a vital role in the immune system?». Nature Reviews. Immunology 4 (6): 457-67. PMID 15173834. S2CID 29318345. doi:10.1038/nri1369. 
  130. Krueger JM, Majde JA (May 2003). «Humoral links between sleep and the immune system: research issues». Annals of the New York Academy of Sciences 992 (1): 9-20. Bibcode:2003NYASA.992....9K. PMID 12794042. S2CID 24508121. doi:10.1111/j.1749-6632.2003.tb03133.x. 
  131. Majde JA, Krueger JM (Dec 2005). «Links between the innate immune system and sleep». The Journal of Allergy and Clinical Immunology 116 (6): 1188-98. PMID 16337444. doi:10.1016/j.jaci.2005.08.005. 
  132. Taylor DJ, Kelly K, Kohut ML, Song KS (2017). «Is Insomnia a Risk Factor for Decreased Influenza Vaccine Response?». Behavioral Sleep Medicine 15 (4): 270-287. PMC 5554442. PMID 27077395. doi:10.1080/15402002.2015.1126596. 
  133. Krueger JM (2008). «The role of cytokines in sleep regulation». Current Pharmaceutical Design 14 (32): 3408-16. PMC 2692603. PMID 19075717. doi:10.2174/138161208786549281. 
  134. Besedovsky L, Lange T, Born J (Jan 2012). «Sleep and immune function». Pflügers Archiv 463 (1): 121-37. PMC 3256323. PMID 22071480. doi:10.1007/s00424-011-1044-0. 
  135. Taylor A, Watson C, Bradley J (2005). «Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy». Crit Rev Oncol Hematol 56 (1): 23-46. PMID 16039869. 
  136. Barnes P (2006). «Corticosteroids: the drugs to beat». Eur J Pharmacol 533 (1-3): 2-14. PMID 16436275. 
  137. Masri M (2003). «The mosaic of immunosuppressive drugs». Mol Immunol 39 (17-18): 1073-7. PMID 12835079. 
  138. Welling GW, Wiejer WJ, van der Zee R, Welling-Werster S. (1985). «Prediction of sequential antigenic regions in proteins». J Mol Recognit 88 (2): 215-8. PMID 2411595. 
  139. Sollner J, Mayer B. (2006). Machine learning approaches for prediction of linear B-cell epitopes on proteins. 19 (3). pp. 200-8. PMID 16598694. 
  140. Saha S, Bhasin M, Raghava GP. (2005). «Bcipep: a database of B-cell epitopes.». BMC Bioinformatics 6 (1): 79. PMID 15921533. 
  141. Flower DR, Doytchinova IA. (2002). «Immunoinformatics and the prediction of immunogenicity.». Appl Bioinformatics 1 (4): 167-76. PMID 15130835. 
  142. Finlay B, McFadden G (2006). «Anti-immunology: evasion of the host immune system by bacterial and viral pathogens». Cell 124 (4): 767-82. PMID 16497587. 
  143. Cianciotto NP. (2005). «Type II secretion: a protein secretion system for all seasons». Trends Microbiol. 13 (12): 581-8. PMID 16216510. 
  144. Winstanley C, Hart CA (2001). «Type III secretion systems and pathogenicity islands». J Med Microbiol. 50 (2): 116-26. PMID 11211218. 
  145. Finlay B, Falkow S (1997). «Common themes in microbial pathogenicity revisited». Microbiol Mol Biol Rev 61 (2): 136-69. PMID 9184008. 
  146. Kobayashi H (2005). «Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections». Treat Respir Med 4 (4): 241-53. PMID 16086598. 
  147. Housden N, Harrison S, Roberts S, Beckingham J, Graille M, Stura E, Gore M (2003). «Immunoglobulin-binding domains: Protein L from Peptostreptococcus magnus». Biochem Soc Trans 31 (Pt 3): 716-8. PMID 12773190. 
  148. Burton, Dennis R.; Robyn L. Stanfield and Ian A. Wilson (2005). «Antibody vs. HIV in a clash of evolutionary titans». Proc Natl Acad Sci U S A. 102 (42): 14943-8. PMID 16219699. 
  149. Cantin R, Methot S, Tremblay MJ. (2005). «Plunder and stowaways: incorporation of cellular proteins by enveloped viruses». J Virol. 79 (11): 6577-87. PMID 15890896. 
  150. Retief F, Cilliers L (1998). «The epidemic of Athens, 430-426 BC». S Afr Med J 88 (1): 50-3. PMID 9539938. 
  151. Plotkin S (2005). «Vaccines: past, present and future». Nat Med 11 (4 Suppl): S5-11. PMID 15812490. 
  152. El Premio Nobel de Medicina de 1905 Nobelprize.org Visitado 8 de enero de 2007 (en inglés).
  153. Mayor Walter Reed, Cuerpo médico del ejército de Estados Unidos Walter Reed Army Medical Center. Visitado el 8 de enero de 2007.
  154. Metchnikoff, Elie; Translated by F.G. Binnie. (1905). Immunity in Infective Diseases (Versión in extenso: Google Books). Cambridge University Press. ISBN 68025143 |isbn= incorrecto (ayuda). 
  155. El Premio Nobel de Medicina de 1908 Nobelprize.org Visitado el 8 de enero de 2007
  156. Forsdyke, D. R. (1995). "The Origins of the Clonal Selection Theory of Immunity" Archivado el 30 de julio de 2012 en Wayback Machine. FASEB. Journal 9:164-66
  157. Shampo, M A; Kyle R A (Juny de 1999). «Stanley Cohen--Nobel laureate for growth factor». Mayo Clin. Proc. (Estados Unidos) 74 (6): 600. ISSN 0025-6196. PMID 10377936. 
  158. El Premio Nobel de Fisiología o Medicina 1986 Nobelprize.org Consultado el 28 de julio de 2011.

Enlaces externos

]
  • image Wikimedia Commons alberga una categoría multimedia sobre Sistema inmunitario.
  • Anatomía y fisiología - sistema inmunitario.
  • Enciclopedia Médica en español - Respuesta inmunitaria.
  • image Datos: Q1059
  • image Multimedia: Immune system / Q1059

wikipedia, wiki, libro, libros, biblioteca, artículo, leer, descargar, gratis, descarga gratis, móvil, teléfono, android, ios, apple, teléfono móvil, pc, web, computadora, Información sobre Sistema inmunitario, ¿Qué es Sistema inmunitario? ¿Qué significa Sistema inmunitario?

0 respuestas

Deja una respuesta

¿Quieres unirte a la discusión?
¡Siéntete libre de contribuir!

Escribir una respuesta

Los campos obligatorios están marcados con estrella *